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A comprehensive method of analysis of axisymmetrical
thin elastic shells of revolution based on finite element 4 )
approach is presented in this paper. The basic finite
element, by means of which any axisymmetric shell may be
approximated, is a truncated conical ring. In the limiting
case such an element is replaced by a short cylinder; at

the ends of a shell,shallow spherical caps are employed.
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By using many elements, thickness variation of the shell

can be approximated. The procedures are stated in matrix

algebra and in principle are btased on the “"displacement method"

of analysis. An example illustrates convergence of the

proposed method.
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Introduction

Axisymmetrical thin shells of revolution are widely used in flight
and other
/structures. These shells often have arbitrary shape and thickness
variations to meet functional and manufacturing requirements. For
various reasons, such as junctures with adjoining parts, discontinuity
in load distribution, etec., important bending stresses are developed in
the shells in addition to membrane stresses. The analysis of such shells
is, therefore, of great importance to design engineers.
A review of literature shows that mathematical solutions of bending
problems of axisymmetrical shells of revolution are available only for
a few special cases. The governing differential equations originally
formulated by H. Reissner and Meissner based on the classical theory of
elasticity have been solved exactly for spheres, cones and cylinders of
constant thickness(l)(e). For shells with variable thickness only a few
special solutions exist(l)(3).
The problem becomes more complicated when the‘deformations are
large. E Reissner formulated the governing differential equations of the
"small finite deflection theory" which considers small deformations but

()

arbitrary rotations' /., These equations, in géneral, can be solved only

by asymptotic integration, and solutions can be found for a few simple
cases(S).

The governing differential equations, however, can be solved by
numerical procedures, i.e., by finite difference method with the aid of
a digital computer. Such solutions have been formulated by Sepetoski,

Pearson, Dingwell, Adkins(g) (ll).

s and Soare However, one is not
assured of a high degree of accuracy even when a fine mesh is used.

This paper describes a finite element solution of thin shells of
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Nomenclature
A = force transformation matrix
a = radius of sphere or cylinder
B = displacement transformation matrix
E = modulus of elasticity
il = element flexibility matrix
H, M\, N = stress-resultants
. d = designations for upper and lower edges of an element
K = stiffness matrix of the structure (assemblage)
k, X = element stiffness matrix L
L = element length; also £ = (at)% / [12(1-\'2)]: for spherical ccd
R = Jjoint or edge force matrix
r = displacement matrix; horizontal radius
T = ratio sy /s i
S = element force matrix
s = distance along cone from apex
— thickness of shell
U = unknown joint displacement matrix
v = element displacement matrix; meridianal displacements
X = -unknown Jjoint force matrix
2% i, .1
y - 2309 |F (2 maa)? ()}
a = inclination of conical element
5,6; 8,f = displacements; deformations
it = [3(1-\/2) az/tz] &
v = Poisson's ratio

Other symbols and super- and subscripts are defined in the text or
on the figure.
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revolution in which the actual shell of arbitrary shape and smoothly
varying thickness is approximated by a series of truncated cones and
cylinders and shallow spherical caps for the end pieces. With the
structural properties of the elements known from available solutions of
conical, cylindrical, and spherical shells, a solution of the general
problem can be obtained for any axisymmetrically applied loads by the
matrix method of analysis familiar to structural engineers. If the
loads are applied in several increments and at each step the deformed
shape of the shell is considered as the new outline of the shell, the
solution becomes equivalent to one based on a large deformation theory.
Also after each step of loading the stresses and strains in the individual
elements determine whether or not a new set of constants defining material
properties should be assigned in the next load increment. In this manner,
the method can be extended to include non-elastic material properties
provided the biaxial stress-strain relation of the material is known.

In this paper only the basic principles and formulations necessary
for a small deformation elastic analysis are presented. Refder
interested in further details of the method are referred to & technical

report by the authors(lo).

Conical Elements

In recent years the basic principles of the finite element method
of structural analysis have become well known and are adequately
described in the literature(6). Here to solve the problem, the
"displacement method" of analysis is employed. This solution procedure

is first discussed with reference to the conical elements. Later, the
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needed additional equations for cylindrical elements and the spherical
cap are given.

In a typical n-th conical element such as shown in Fig. 1, M (n),

1
(n)

» and Hj(n) are self-equilibrating stress-resultants and

(n)

y (n)
J
may be applied independently. For vertical equilibrium Nj

» By
» hovever,
must be balanced by Ni(n); hence, Ni(n) = T Nj(n) vhere T = Sj/si'
Together these five independent element edge-forces acting on a truncated

(n)

cone form the S column matrix. As may be seen from Fig. 1, the

rotations xi(n), %j(n), the displacements si(n), 5j(n) and the
stretch e(n) in the direction of the cone generator occur corresponding
to this system of forces. Positive sense for these five displacements
is in the positive direction of the applied forces and for any n~th

conical element, they can be related to the applied edge forces through

a flexibility matrix in the following manner:

PAUNNECE R I 1R
‘xb(n)i fgﬁ fgg . . . N%(nﬁ
T I I S Hi(n)§ (1)
aJ(n) . fﬁﬁ . | HJ(n):
RS I I <>{

or simply as
() [f(m s (2)

After lengthy manipulations, based on the bending theory of
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» together with the membrane solution for stress-

(1)

conical shells

resultants Ni and I\I‘j s the following relations corresponding to

Eq. 1 written in expanded form are obtained: *

X1 = 'Cpl{ 212%2071) = 80Py () + Poky () - ok (3 )J Y
D11 (¥ )J 5y

by 3k, (y3 )] HJ}

* Lalhb2(yi) - 2Py () + oy ()

+12000%0) - 2Py (3y) + oy l(yy)

# [213905) - 250 () + 5y,

+ (T cot & _/Et)Nj

1
E
W
"\
o
g

+ L_allb2(yj) - a5 l(y ) + llkg(yj) - bgl 1\Y )] Hl
| 913 2(y ) - @23 l(y )+ 13 2(y ) ]

- (cot @ /E:t)Nj

+

0y = <003 [ay05(5,) + apgbylyy) + 2ys(;) + Bygilyy) | m,

+

[ Wwbs(yy) + agbe(y) + byyks(y,) + b hk6(yi)J "5

-

e Lm0+ mamly) + ksly) + o) 1y

+ [ a1305(y;) + 8530 (¥y) + By ks (y) + b23k6(yi)J Hj}

+ (v s cos o /Et) Nj

For simplicity,supers crlpts(n) on all displacements and stress-resultants,
and subscripts on @ are omitted,
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a1205(7,) * 8ys0g(7,) + bks(3.) + Dglegly >' M,

a 3b5(y ) + a23b6(y ) + bl3k5(y ) + b 3k6(yj): H, }

[ ;
(

v s cos Ot'_/Et)Nj Sec
L le belnt

e = @2{ [alg (g(y;) = lyy) ) + 8np (Pyp(¥) = Byo(vy))
+ by Ciglyy) = Bglry)) + by (i) = () > |y
e [ (ooty) = B> + 3, (orglry) - Bagle)
+ blu<k9(yj) - k9(yi)> + b2u<klo(yj) - klo(yi)>] M, (3)
# oy (B0y) = Bya) Y+ iy (i) = yoly)
+ oy (i) - ()% + By (Raglyy) - le(yi)>] 4
# [y (oelry) = ) + 25 Broy) = Brglyy)

# b3 (o(vy) = Rlwy) S + Bpg (yplyy) - klo(yi)>] H, }

+(s'j log r / E’l:)N‘j

1
2,12 2
where Cpl = 2 |3(1-y7) cot Q/Et" , Cp2 = cot @/Et ,

Cp3 = cot a cos O/Et

Arle 2o a%,,m

md»(/rbt/& L ()AJ .

M,m Larger ()

‘_:%W




a,, =-sin Q& s, dll/A a,, = ~y§ dl2/2A
83 = -sin @ sy dypg / & a,), = - y? dy) / 2A
a5, = sin s, 45 /O a,, = y? dop /24
a23=sinasjd23/A a’21+=y§621+/2A
b, = -sin @ s, d3l/A b =-y§ d32/2A
bl3 = -sin & 85 d33 / A by = - y? d3h / 24
b21 = sin«& 55 dyy /& b, = y? 4y / 2o
b23 = sin O SJ dh3 /& be)+ = y? dhh / 2
Ly vy k() Ry(yy)
A o (y;)  -balyy) k(v -ks(yy)
bi(y;) vy Ky (yy) ky(y5)
by (y;)  -b3(y;) k(y;)  -klyy)
dji = minors of item 1ij in the detemminant A .

bl(y) = ber y - 2y—lbei'y
kl(y) = ker y - 2y-lkei'y
ba(y) = ¥ ber'y - 2(1-v) v, (y)
ky(y) = ¥ ker'y - 2(1-v) X (y)

b5(y) = -3 [y ber'y - 2(1+v) bl(y)]

ks(y) = -% l'y ker'y - 2(1+v) kl(y)]
b9(y) =y ber y - 2(1+y) y-lbei'y

kg(y) = v ker y - 2(1+y) y-lkei'y

b(y) = bei y + 2y Tverty

ky(y) = kei y + 2y lker'y

0, (y) = ¥ bei'y - 2(1-v) by(y)
k,(y) = ¥ kei'y - 2(1-v) k,(y)
be(y) = -3 [y bei'y - 2(1+v) bé(Y)J
k(y) = -3 {y kei'y - 2(l+v)k2(y)J
by(y) = v bei y + 2(1+v) ¥ Tber'y

klo(y) = v kei y + 2(1+v) y—lker'y
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The appropriate terms in Eq. 3 define the elements of the matrix
f(n) in Eq. 1. Some elements in this matrix bear a ratio of T to
the corresponding quantities on the opposite side of the diagonal and
the matrix is not symmetrical. Nevertheless, it can be shown that
Betti's law is satisfied, and the matrix could be symmetrized by using
in the solution total force quantities around each edge. However, it
appears more advantageous to work with edge forces per unit of length
since these are the quantities used in the shell equations.

The accuracy of the matrix f(n), judged from the values of the
quantities on opposite sides of the main diagonal, has been investigated
over a wide range of thickness, lengths, angles and radii of cones.

It was found that the upper left 4 by 4 portion of the matrix is very
good in almost every case. However, discrepancies on opposite sides of
the diagonal develop as O approaches 90°. Nevertheless, the matrix
remains valid as long as tan & is finite. The fifth column and fifth

rov vhich depend on different mathematical functions diverge as the
geometry of the cone approaches extreme cases. To eliminate discrepancies
between quantities of the fifth column and the fif'th row, it is recommended
that the quantities of the fifth row for flat conical elements be used

to establish those of the fifth column since for a small & plate action
predominates. For nearly vertical conical elements, quantities of the
fifth column should be used to establish those of the fifth row. Uith
minor modifications the basic procedure is applicable for conical rings
with larger periphery on the top than on the bottom.

For subsequent work, through a displacement transformation matrix

B, the five displacements shown earlier in Fig. 1 must be related to the

six possible edge displacements. Positive directions for the six new



displacements are defined in Fig. 2 to agree with later usage.

transformation is

e

(n)]
1

(2
J

/.

5§n)

~"

5 (n)
J

(n)

e
~ /

sin

9

o 0
1 0
0 0
0 1

0 cos O
n

or in alternative symbolic forms, one has

{vm} ] [B(n)] {r<n>

In an analogous manner, using the force transformation matrix A,
the five independent stress-resultants shown in Fig. 1 can be related

to the six edge forces shown in Fig. 2.

diagrams, one obtains

7{n)
1
)

w0

{n)
J

~7

ng)
p(n)
vj

s

-1

- ()

(=)
i

(=)
J

( egn)‘
o

o

This

With the aid of these

N

()

(5)

(6)
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or in abbreviated forms,

_ ()
Ol ) {Sm) MY {s<n>} -

aln)
3

Structural Stiffness of Assemblage

After the various structural properties for a truncated conical
element have been established, structural stiffness for an assemblage

consisting of conical elements can be formulated. To accomplish this,

from Eq. 2 one solves for S(n) and substitutes into Eq.7. Whence upon

combining this result with Eq. 5, and noting that k(n) = [f(n)] -1 »
one obtains

g _ alm) (0) g(n) (n) (8)

or

g(0) _ ) (n) gn) _ a(m) (n) g(n) (9)

where

By noting from Egs. 5 and 7 that A(n) and B(n) can be written in
partitioned form, it is possible to recast the expression for E(n) also

into a partitioned form as

alm) g | gln)
=(n) L b (n) Rt B
= - [ () [Bgn) :Bjn ] - | ! T (10)
; S
where
2) L ) (o) oo B L ) ) )
J (11)
w0) | pln) (0) B(in) w(8) | al0) () gln)
i 3 33 3 3

It should be noted that an i-th edge of the n-th element and the
j-th edge of the (n-1)-th element meet at the n-th joint of the

assemblage. Therefore, the joint force, Fig. 3, is
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(

( T(n) + T(.n'l))j

R = < ( P(n) + P(n—l)) R(n) N R(n-l)

~
1

vi v
L .
For the same n-th joint of the assemblage, the displacement T, is
common to the displacement of the bottom edge of the upper element
and to the upper edge of the lower element, i.e.
T = rgn) = r(n-l) (12)
n i J
Using Egs. 7, 10, and 5, Eq. 9 can now be re-stated as
(n) zn) | (n) (n)
Ry kii ) By i L
e Sl Bt e N (13}
r{®) g2 | gln) r(n)
J Jl i Jd J
and with the aid of Egs. 11 and 12, one finally can obtain the
following recursion formula:
w(n-1) +(n) (n 1) (n).,
Rn = ji ro_q * (k + k ) r.oo+ ElJ el (1)

Using this relation, the structural stiffness K for the whole

assemblage may be stated as a tridiageonal matrix as



BEE , , . =
W EE) BRI
| £ @@, @ , I
: : : coEr Ry gl
/ : : : : RSy Rl |

—

This matrix equation is the basic relation R = Kr for the displacement

method of analysis written in a special manner. The computational

procedure stated by Eg. 15, has the advantage that Eii’ k, . »

137 517 %
for each element are developed and put into their assigned position in

a8 do~loop of the computer program, i.e., the K matrix is developed
directly from the matrices of individual elements. This eliminates the
necessity of storage of the large matrices A, B, and k. The final K
matrix is the only large matrix which remains in the computer. If this
K matrix is stored in a conventional rectangular form, the 7090 computer
can handle problems involving 45 elements. By using subroutines of

(7)

skew storage and solution or by applying a recursion process problems
involving several hundred elements can be solved.
In a general problem neither all terms of R nor all terms of

r are completely specified. Equation 15, however, can be re-stated

in partitioned form as

S QS I --} (16)
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where the unknown displacement U can be found first, and then the

unknown joint forces X . With this information, using Eq.7, all

components of S(n) for each element of the assemblage can be determined.
After the stress-resultants M§n), Mgn), Hgn), Hgn), and Ngn)

comprising S(n), acting on the edges of a conical element are known,

the internal stresses and deformation at any point in the cone can be

found using equations such as given by Flﬁgge(l). The constants Al,
Ay, By, B, of the Flligge equation (Ref. 1, p. 373) for the bending
stresses can be determined from the previously given quantities using

the following relationship:

( )
” - [~ ~ (n)
A 11 %12 %13 | %
(n)
f2l _ "1 2 %3 %2l M |
‘ B N b b b < u(n) (17)
1 11 12 13 1k J
(n)
B Po1 P Ppz Doy | M
\ / L. - \ J
In the notation of the reference, this must be supplemented by
g = Uy 85 /s and Ng=0 toaccount for the membrane stresses.

Cylindrical Flement

In the fomulation of some problems cylindrical elements are
encountered and their structural properties must be known. The force
transformation matrix A and the displacement transformation matrix B
for the cylindrical element follow directly from the previously stated
Eqs. U4 and 6 upon setting & = 90°%, with T = 1 . The flexibility of
a cylindrical element, howeverymust be developed anew. The expressions

sought can be found from the bending and membrane solutions of cylindrical
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shells. After some manipulation, the bending and the membrane

(1)

solutions » corresponding to the system of edge forces shown in

Fig. U4, yields the following results: *

K
p SO {’(Cll" Co1™ O30 Oty + (Cppm Cppm Cgp- Cp )M,

+ (€13 Cygm Caa- OBy + (Cyy- - Oy Oy )E }

K -W ~W .
?Qj = am{ [-e (cos w + sin w)Cll +e (cos w - gin w)C21

+

w ) w . 1
e (cos W - sin w)C31 + e (cos W + sin w)ChlJ M,

- -w
+ | -e w(cos W + sin w)C12 + e (cos w - sin w)C

% 22

w . W .
+ e (cos w - sin w)C32 + e (cos w + sin “)Cue] Mj

+1-e(cos w + sin w)C. ., + e-w(cos W - sin w)C

L 13

23

e’(cos w - sin w)C., + e (cos w + sin w)Cu3J H,

-+

33

+

-y X -w .
[-e (cos w + sin w)Clh + e (cos w - sin w)C2u

+

W . w .
e (cos w - sin w)C3u + e (cos w + sin w)Chu] Hj

5, = (‘Cll'cgl)Mi + (-012-C32)M ;0 (-013-033)1{1 + (-clh-c%)ﬁj
+ (va/Et)N
-0 -0 w W .
Sj = (e"cos w C;py e sinwCy +ecosw Cyp *esinw Cul)Mi

-w -0, W
+ (e coswC,,+e sinwC, + e cos wC

W
12 - + e sinw Cha)Mj

32
+ (e %os v Cig + e Ysin v Cag * e“cos w Cag + esin w Ch3)Hi

-l -0, w W .
+ (e cos w C,, + € sinwCy + e cos w C3h + e sin w Chh) Hj

- (va/Et)N

¥
For simplicity, superscripts (n) on all displacements and stress-resultants
are omitted.
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{ "“(cos w - sin w)- 1J 13+ l: “(cos w + sin w)- lJ C23
W
-l' (cos w + sin w)- l] 33 { (cos w - sin w)-1 CLF3}
+ -21:(— {[e"w(cos w - sin w)-l] Cyyy + [e' (cos w + sin w)-1 Col

- [e‘*’(cos W + sin w)—l] 034 + [e‘*’(cos w - sin w)-l] CMJHJ

+ (A /EL)N
w = Kf s Cyq 5 Cpp eveeeees Oppy Cy) satisfy the relations
Cp = CpMy  +CygMy  + O H o+ CpE
02 = CalMi + C22Mj + 023Hi + C2th
C3 = C31Mi + C32M‘j + C33Hi + C31',Hj
Cy = Cyy £ CoMy  * Oyl + Oy,
Dlla2 /(o 2K>) Cpp = Dy / (& 2xi)
€y = D3la3 / (& 2k) Cy, = -Dypa> / (& 2x)
-Dleaa / (& 288) Cop = D22a2 / (b 2k8)
Cps = —D32a3 / (& 2Kd) Cpy, = Dypa° / (& )
Dl3a2 / (& 2kE) Cxp = -D23a2 / (& 2k#)
Cyq = D33a3 / (& 2K0) Cy = —Dh_3a3 / (& 2KB)
- -Dlhaa / (& 2K&) 0, = D21‘La / (& 2k#)
g = -D3ha3 / (& 2xd) Gy, = D2 / (& 2K 13)

A = [2 sin w + (e - e"")} [2 sin w - (&” - e"*’)]

(18)
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. 2w
Dll =Ccos 2W ~-sin 2w ~ e
W -
D21 = -(cos w + sinw)(e -e ) -2 sin w el
2w ]
D31 =€ - 1 - sin 2w

w -0 . W
Dy, = cos @ (e -e ) -2sinwe

2w
D), = (cos w - sin w)2 +2 sin® w - e
Dy, = -COS W (¥ - e™) - sinw (e + &™)
2

D32 =2 sin” w

, W -w
Dy, = - sin © (e” - e ™)
D.. = - 4 sin 2w + 2w

13 = sin cos

D23 = (cos w - sin w)(ew e +2sinwe™
D33 =1-¢e v sin 2w

Dh3 =cosw (e -e™) - 2sinwe™

-2u . 2 .
Dlh = e -2 s8inw - sin2w - 1

D,), = -cos W (¥ - e™) - sin w (ew +e™Y)

.2
D3h =2 sin w

, W -
D), = -sin w (e” - e )

From the above equation,. the flexibility matrix analogous to that
given schematically by Eq. 1 can be obtained. In this matrix the
(n) (n) .(n) .(n) (n) _ y(n) ;

flS ’ f25 ’ f51 s f52 are zero, and Nj = N, By invert-

ing the f matrix, the stiffness matrix X for a cylindrical ring is

elements

obtained.
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In a solution of a complete problem, after the edge stress-
resultants M§n), Mén), Hgn), Hgn), N(n) for a ring are determined,
stresses and displacements at any point of the ring can be found. For

the equations such as given by Fllgge (Ref. 1, p. 228) the constants

Cys Coy 03, C, are given by Eq. 18 of this paper.

Spherical Cap

In many instances a shell of revolution may be closed at an end.
In finite element solution this closure can be approximated by a shallow
spherical cap. The required structural properties for such a cap are
found by first comparing the displacements and the force systems shown in

Fige 3 and 5. From this, the displacement transformation matrix B(o)

and the force transformation matrix A(o) may be formulated as follows:

¢

- ) _ " 3 a [ N
KONy 0 ogo) oV o] |l
(o) (o) (1) (0)
JEN } 0 0 JAhl and 4 P} 0 T AR (19)
(0) (0) (1) (0)
6v _9 -1 Awl Pv -1 Q
\ / \ ) \ J I y
or in symbolic form corresponding to the analogous Egs. 5 and 7,
W0 50 (0) and r(0) _ 4(0) 5(0) (20)

No subscripts for the symbols in the last equation are necessary since
tle re are no upper and lower edges in a cap.
The force-deformation relationship for the cap must be established

next. Such an equation, using the flexibility matrix, can be written as
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[ () EQECI) ( (0]

3 @0 - fég) fég) ég) $ w0

o) L ] [
or in the abbreviated notation as v(o) = f(o) S(O). The inverse of
#00) i the stiffness matrix K ©) of the cap.

(0)

To determine the elements of the £

(1)(2)

matrix, the available
solution for bending of a shallow spherical shell was utilized.
For this purpose, the shallov cap was assumed supported by a concentrated
force P as shown in Fig. 5, and the change in vertical height 5(0)
vas determined corresponding to balanced vertical forces. This
approximate solution causes a local "hump" near the singular point.

By making the cap, however, sufficiently small, the effect of this local
phenomenon can be minimized. Other deformations were found in a conven-
tional manner. On this basis, the following expressions apply:

x40) = (1/g) (¢ bertx  + Cglbei'xo)M(o)

+ Q/ﬁ)(cmber'xo + Caebei'xo)ﬁ(o)

+ (J/;Z)(Cl3ber‘xo + Cyokei'x - (Zaro/l{) kei'xo)Q(O)

3
6h(o) = (Z/a){c [x ber x - (1 + v) bei'x ]
TN 11| 7o o) o
*Cyy [xo bei X + (L +v) ber'xOJ M(O)

(—e/a){clg Il;xo ber x_ - (1 +v) bei'on

+

+ x_ bei x +(l+v)berx] H(O)
22 ol

-+

{(Z/a)c [x per x_ - (1 +v) bei'on

13
(f/a)C [:x bei x_ + (1 +v) ber! XOJ

+

e}

o]

(,€3r /aK) x, kel x_ + (1 +v) ker'x_ + (1+v)/x ] Q(O)
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550) ={C11 [-([2/a2)xo (1+v) beitx_ - ber xo]
+Cyy [(22,:0/&2)(1 +V) ber'x_ - bei XOJ} 1(0)
+4 0 [-(22;(0/32)(1 + V) bei'x - ber xo]
+ Cyp [(gexo/a@)(l + V) ber'x - bei xo]} (0)
+ 1 Cs [-(Zexo/aa)(l + V) bei'x_ - ber on

+ 023 l:(,éexo/az)(l +V) ber'x - bei Xo]

_ (faro/K) [(,Zexo/az)(l + v)(kerlxo + l/xo) - kei XO]}Q(O)

vhere Cp, = ~( Z2/AK) ber'x
Cip = -(l/AE’c)(a.3xo/(ea.2 + ri)) [ber x - (1 - v)bei'xo/xo:l (21)
013 = (l/A){ (Zero/K) {ber x ker'x - ber'x ker x_
- (1 - v)bei'xO ker'xo/xo + (1-v )ber'xO ker'xo/xo}
+ ([3/1{)(a2/(a2 + ri)) [ber X - (1 - v)bei'xo/xo]}
C2l = —(,ZE/AK) bei'xo

Cop = -(l/AEt)(a.?’xo/(a2 + ri)) [bei X+ (1- v)ber'xo/xo:]

Co3 = (1/n) (ggro/K) [bei x ker'x - bei'x  ker x
+ (1 - v)ber'xo ker’xo/xo + €1 - v)bei'xo kei'xo/xo}
+ (Z3K)(/(a2 + ri)) [bei x_+ (1 - v)ber'xo/xo]
x =x/¢
2 - (at)é/[le(l i v2)]%
and A =

-
- - 1 - - ]
l'bei X, + (1- v )ver Xo/xoj] [ber X (1- v vei xo/xo]

beilx -bert'x
o} o]
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Joint Loads

If the applied loads are concentrated and act at the joints of the
assemhlage, the solution procedure given above is directly applicable.
For distributed loadings such as occur, for example, when a shell is
pressurized, the loading condition must be approximated by concentrated
forces applied at nodal points. For this purpose two schemes were
developed. In the one, the distributed load is concentrated at several
of the nodal points; in the other, reversed fixed-edge forces are applied
at the joints. In the latter case, the fixed-edge forces must be super-
imposed on the element forces obtained from the solution of the
assemblage of elements to give the final result.

() The approximate load on joint n, Fig. 3, simply taken as the
components of the total pressure on the tributary (shaded) areas as

shown in Fig. 6 are

Tnao

P= {[(ra v rn)/rn] (a/2)sin a, * [(rn > rb)/rn](blalsin ab}' P,

(22)
P = {[(ra + rn)/rn](a/E)cos o + l:(rn + rb)/rn](b/2)cos o }Pr

where r, s T, are two radii of the centroidal circles for element a
above and b below the joint n, and oza 3 Otb are the inclinations of
the respective elements, For such an approximation of loading, the loads
contributed by the pressure on the spherical cap are assumed concentrated
along the hottom edge of the cap. pr is the internal pressure,

(b) The joint loads from fixed-edge forces can be found from the

following expression

NONINCORRFCNONC (23)
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where SI(.l,n) is the matrix representing the fixed-edge forces acting on
an element, and véln) is the matrix for the membrane deformations of the
element. For future reference, the membrane displacements of the
elements are listed below. For the truncated cone having no meridional

displacement of the top edge, these relations are

szz?) - (prcot a [/ 2) [Si - (s?/si)]

X:Sx?) =_(prCOt2a / 2Et) [3 By + (s?/si)}
(n)

Xm3 = (prcotea / Et) 2 8

‘ (24)
5151?.-) =-(prcosaa/(2Et sin a)) [(a-v)si + v siJ
653) = (prcosaa /(Et sin a))si
e(g) = (prcot o/ hEt) [(1—2\/)(5? - si) -2 s? log (sj/si)]

The corresponding expressions for cylindricel element are

7{-:@ =0 Xréx?) =0
5:51‘11) = -, e?/ Bt 515131) = b, 2%/ Et (25)
ergn) = -vp_ ab/ Bt
and for the spherical cap are
;O) = (1-v) P, T, / 2Et
51(1:?1)’ (l-v)prroa/EEt (26)

61(12) = (1-v)p_ 1o/ 2
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Illustrative Example

As an application of the procedures described above, results of
several analyses of a spherical shell are reported. A spherical shell
was selected for ease of comparison with known solutions. The shell
considered is 0.5 in, thick, has a 100 in. radius, and & central semi-
angle of 750. The edges are clamped, and the unit is pressurized to
100 ps;l. let E = 107 psi, and v = 0.2.

This shell was analyzed by three different procedures. In the one,
reversed fixed-end forces were applied at the joints of the assemblage
and the problem solved. The resulting meridional moments for three
different arrangements of elements are shown in Fig. 7. The angles
subtended by the elements ranging from top to bottom are noted on the
figure. Altermatively, the problem was re-solved using approximate joint
loads. The end results are shown in Fig. 8. In these solutions equal
size elements were used in each case. The assumed subtended angles of
1.50, 2°, and 39, respectively, are noted on the figure.

In examining the two sets of solutions it is seen that the stresses
near the apex are unrealistic and must be discarded. The assumed cap
of 50 semi-angle is too large in comparison with the conical elements.
Instead of having a cap at all, however, a much larger portion of the
shell may be completely removed, and only a force determined from the
membrane analysis applied at the newly created boundary. This procedure
minimizes the number of elements required in the analysis and is recommended
whenever aspplicable. Also from the diagrams it can be noted, with
particular clarity from Fig. 8 where the same size elements are used,
that over a considerable range of ¢ the curves are horizontal. This

range in the real structure corresponds to the zone where membrane stresses
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are predominant and where virtually no bending stresses occur. The
structure was analyzed, however, as if it were loaded with concentrated
forces. This distorts the real situation and indicates the presence of
moments of constant magnitude over a large zone of the shell. By taking
the length of elements very small, these "residual moments" can be
reduced to negligible amounts. It also appears sufficiently justified
to simply shift the base-line of the graph by the amount equal to the
residual moment corresponding to the size of the elements provided the
element lengths and break angles are constant. On this basis, for
example, the corrected maximum moments for the three sizes of elements
are 595.9, 596.0, and 597.8, respectively. These values compare very
favorably with the value of 589.2 which is obtained from Hetenyi's
equations for a spherical shell(s).

Excellent results are obtained with a minimum number of elements
if edge distortions in the primary structure calculated on the assumption
of membrane action are made compatible with the prescribed boundary
conditions using the finite element model. This does not introduce in
the interior joints any "residusl moments" nor any joint loads. Solutions
of the same problem based on this procedure are shown in Fig. 9.

Based on the above and other examples, it is concluded that the
proposed method can yield sufficiently accurate results for most
practical purposes. Moreover, the method is highly versatile and can

be applied to problems which cannot be solved by any other means.

Note:

After the work on this phase of the investigation was completed, a
paper using somewhat similar approach by Peter E. Grafton and Donald R.
Strome on "Analysis of Axisymmetrical Shells by the Direct Stiffness Method"
appeared in the October 1963 AIAA Journal, Vol. 1, No. 10, pp. 2342-23U47.

In this paper several aspects of the solution are done differently.
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